A Simple Method of Residential Electricity Load Forecasting by Improved Bayesian Neural Networks
نویسندگان
چکیده
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملforecasting effects of scenarios of subsides removal on residential electricity consumption by artificial neural networks
the increasing consumption of electricity in iran is one of the greatest concerns of the government. using the subsidy-based pricing system is one of the main reasons of improper pattern of residential electricity consumption that has imposed great cost over the government due to the increased number of consumers and their improper way of consuming electricity. in this paper, we analyze the fac...
متن کاملForecasting electricity load with advanced wavelet neural networks
Electricity load forecasting is a key task in the planning and operation of power systems and electricity markets, and its importance increases with the advent of smart grids. In this paper, we present AWNN, a new approach for very short-term load forecasting. AWNN decomposes the complex electricity load data into components with different frequencies that are predicted separately. It uses an a...
متن کاملResearch in Residential Electricity Characteristics and Short-Term Load Forecasting
In this paper we make research in Residential short-term load forecasting. Different application scenes have different affecting factors of short-term load, so we should specifically analysis of factors that affect the load of the residential electricity. We use SPSS (Statistic Package for Social Science) to figure out the relationship between the daily load and temperature, weather conditions ...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2018
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2018/4276176